Usable surface detection on top-view camera data

using automatic ground truth generation for binary semantic segmentation

MPSYS Design project 2019

Victor Brandt
MPSYS
Chalmers University of Technology
Gothenburg, Sweden
brandtv @student.chalmers.se

Lukas Rauh
MPSYS
Chalmers University of Technology
Gothenburg, Sweden
dlukas @student.chalmers.se

Abstract—A common problem for factory environments is
incorporating a flexible assembly-line workflow that does not
occupy too much space on the factory floor. For these purposes
autonomous vehicles could be used to supply the assembly-lines
with materials, but the problem of navigating in the factory then
arises. Therefore this project aims to solve the problem of what
areas of a factory floor are drivable, using a workflow consisting
of background subtraction to generate a ground truth, that is
then used to train a neural network. The output could potentially
be used as a mapping for which a scheduler or robot control
system could work upon to avoid collisions and problems with
dynamic obstacles.

I. INTRODUCTION
A. Project Background

One of the wupcoming challenges for the vehicle
manufacturer AB Volvo is to make the supply for a
flexible assembly-line accessible without taking up too much
space. This is due to the big number of different parts
involved in every different product configuration and they
cannot build separate assembly-lines for each of them.

Another incentive for AB Volvo is the fact that factories
are continuously working towards having a more flexible
production as a whole, which requires a more modular
approach to the storage of materials and components used.
With that in mind, the old ways of keeping racks of materials
close to an assembly line yields a number of problems for a
more flexible production, because the time-toll for constantly
changing inventory is quite demanding.

B. Literature Study

The main inspiration for the project has been the article
by K. Asadi [1], where a very similar approach to the factory
surface problem was taken. Binary segmentation was used and

Mattias Juhlin
MPSYS
Chalmers University of Technology
Gothenburg, Sweden
juhlinm @student.chalmers.se

Zhanyu Tuo
MPSYS
Chalmers University of Technology
Gothenburg, Sweden
zhanyu@student.chalmers.se

a neural network was trained, but the implementation was done
locally on the vehicles with a POV-camera as the video source.
Despite this, a lot of information regarding network setup and
the types of data augmentation techniques could be used in
the project. Flipping, cropping and color jitter were used, and
the last two are mentioned as amongst the best techniques
for improving network accuracy in a paper investigating data
augmentation [2].

II. PROBLEM

The purpose of the project is to enable for instance a fleet
of autonomous vehicles to differentiate between a drivable
surface and a non-drivable surface in a factory setting. This
is to be able to use the data for safe navigation and being
able to deliver the correct components to a location without
endangering workers and/or equipment. Further, the solution to
this problem could be used for any type of indoor environment
where for instance autonomous robots will be used.

III. APPROACH
A. Project Approach

The main problem that the project aimed to solve was
binary classification of surfaces to deem them drivable or not.
This was done mainly through algorithm development using
Python, where the workflow consisted of two main steps;

o Data Generation
— Video Recording
— Background Subtraction
o Binary Semantic Segmentation
In the project background subtraction was used on pre-
recorded data to create a binary ground truth of what is
considered foreground and background in a scene, and the data

was then fed to a neural network to perform binary semantic
segmentation. Doing this is making way for automatic
ground-truth generation which optimize time-consumption.
Examples of both methods can be seen in Figure 1 and 2
and background subtraction is explained in [3], semantic
segmentation in [4].

The recorded video used for the background subtraction was
saved at only 6 frames per second to ease the computational
burden on the calculations of the ground truth. This does not
impact the performance of the semantic segmentation network
because it only sees individual frames without context, and
having a lower frame rate does not have any apparent affect.
Having a high frame rate mainly yielded many similar frames,
thus creating abundant training data.

. ai“ ﬁ A!‘
Fig. 1: Background subtraction example [5].

Background subtraction was implemented using an open
source real-time computer vision Python library called
OpenCV [6]. This library was immensely helpful as it already
contains many needed functions and operates with NumPy-
arrays, which makes data processing in general much simpler.
Several functions was despite this created for the project, both

implementing other algorithms and combining existing ones
to free up the code and make it easier to debug.

Fig. 2: Multi-class semantic segmentation example [7].

Semantic segmentation can be implemented by feeding
the image from the cameras into a CNN encoder consisting
of convolutional layers with ReLu activation functions and
max-pooling to downscale, in combination with up-sampling
decoder architecture using deconvolution similar to what is
done in [4]. The output should show if there is ground or
obstacle at each pixel.

It can be realized using an open source machine learning
Python library like PyTorch [8] or TensorFlow [9]. In the
work of J. Long [4], the network GoogleNet[10] was used as
the encoder. For the project, the deep nature of a network like
GoogleNet does not provide much upside however, due to the
simpler task of only binary semantic segmentation. It does
only result in a higher computational cost for both training
and inference. Therefore a shallower network architecture
called U-Net [11] was initially used. U-Net consists of both
encoder and decoder. The full approach is summarized in
Figure 3.

B. Implementation in Practice

The workflow described above could in practice be
used to enhance and optimize performance in a fixed
environment/setting. Because of the ease of generating
ground truth data through the background subtraction method
the whole process can be done in any situation, provided that
a background plate can be filmed, and potentially generate
better results because the neural network will be trained for
exactly the circumstances it will encounter during usage.

It means that as a potential investment, this could be
implemented but not put in to active use for a certain time
period, where the initial purpose is generating training data.
It will lead to a better overall performance of the network
output and increase the flexibility of the approach, by learning
the certain environment in question.

IV. DATA GENERATION
A. Video Recording

The video recording was executed on a number of different
locations to ensure that the widest range of floor surfaces
as possible were taken into account, i.e. using a diverse
dataset to improve the final neural network robustness. For all
recordings the camera was mounted onto the ceiling pointing
straight down towards the floor in a fixed position, where a
number of both fixed and moving obstacles were presented.

Due to the limitations of the project and the fact that
the proper equipment was not available, the recordings only
contained obstacles such as humans, chairs, backpacks etc.
For each scene a background plate was shot without any
obstacles at all to make the results of background subtractions
as good as possible.

The camera used was an Intel Realsense D435i, which
has dual cameras for depth sensing in addition to the regular
RGB-camera. The depth data was not used in the project,
but could potentially be used in the background subtraction
algorithm to improve the accuracy.

B. Background Subtraction

The basis of the project relies on the process of background
subtraction on pre-recorded video to create a ground truth in

Live video feed

New | Rocord video Raw
factory » training
setting data

Evaluation Result
esul
weights

Fig. 3: Flowchart of approach.

order to train the neural network. This pre-processing needs
to, with a reasonable accuracy, differentiate between the
drivable surface within the current frame and the obstacles
that are not a drivable surface.

The whole process is done through four steps.

o Traditional Background Subtraction
o Artifact Removal

e Convex Hull Creation

e GrabCut Execution

Firstly the traditional background subtraction is used, where
each individual pixel is evaluated compared to a background
plate. This background plate is taken as the median of a
recording of just the floor without either moving or static
obstacles to ensure that the plate is as good as possible.

The difference in each of the three color channels (RGB)
is taken and a manually set threshold is used to decide
what difference is needed to regard a pixel as foreground.
The reason for the RGB-split is explained in Chapter IV-C.
The results from all three channels are then fused with an
or operation, which means that for a pixel to be regarded
as a foreground pixel only one of the three color channels
thresholds’ needs to be met.

This combined data for each frame becomes a binary
representation of all its pixels, where the white pixels are
regarded as foreground and the black pixels as background.
Each of these binary frames are then used to create convex
hulls. Which is done through finding every contour in the
binary image, which can be explained as drawing lines around
all connected shapes of white pixels, based on the corners of
the shapes. Then a convex hull is created with using those
contour and the inside is filled with white.

This is done to remove the potential uncertainties and
color-mismatches within objects that can cause “holes” or
other artifacting due to parts of objects having similar color
to the background. As long as the edge of the object has
some contrast (which is almost always the case) the detection
of the inside of the shape does not matter. The convex hull
is used to be more certain of including the whole object even

though the base background subtraction might not be perfect.
The resulting binary frame is then consisting of convex white
shapes that mark the pixels where a foreground object is.

These hulls should be cleaned up because of inevitable noise.

This is done through an artifact filter, which consists of a
simple algorithm that removes all collections of white pixels
that consist of less pixels than the set amount of the function.
This is used to remove certain grainy noise and to ease the
computational load when implemented before the GrabCut
algorithm [12] is used.

These filtered hulls are now used to implement the OpenCV
function GrabCut on the original RGB-image. The GrabCut
function is initialized at every frame using the mask option,
which means that a 2-dimensional matrix (same size as the
image) consisting of 0’s, 1’s, 2’s, and 3’s is inputed to help
annotate what is foreground and background. Here the 0’s
symbolize all certain background pixels, 1’s all the certain
foreground pixels, 2’s all the probable background pixels and
3’s all the probable foreground pixels.

Firstly the 2d matrix was initialized as only containing
2’s, and was after that filled with the other values. The
hulls are regarded to be probable foreground pixels, because
the background subtraction that led to these hulls (after
the artifact removal) should make sure to encapsule the
essential part of every object. Other than this classification,
two RGB-differences like the one explained above was taken
with different thresholds.

The first was taken at a higher one than the original,
to extract the pixels which are certain to be a foreground
object. The second one was instead taken at a lower threshold
than the original, and then extracting all zeros in this matrix
to extract where the areas that are certain to be background
are. It was then implemented in the GrabCut function by
setting all numbers in the 2d matrix corresponding to the
hulls to 3’s, objects in the first RGB-difference to 1’s, and
the non-objects in the second RGB-difference to 0’s.

The result of this process then generates an output that is
used as a binary segmentation matrix that is used as the ground
truth for training in the next step of the process (see Figure

Background

Median

RGB-Split

Plate Video

Background Plate

Background Plate

Binary Segmentation | GrabCut | Denoised Binary Artifact
Frame Frame Filter

Convex Hull Frame

Binary
Background/Foreground Abs-Diff,
Hull Frame K

Convex

Extract

RGB-Split

Live Feed

Frame

Live Frame

Live Frame

Fig. 4: Flowchart of background subtraction.

Fig. 5: GrabCut applied on footage (top left: input image,
top right: raw 3-channel background subtraction, bottom left:
convex hulls created, bottom right: result of the GrabCut
filter i.e. produced ground truth).

5). An overview of the whole background subtraction process
and how the working parts interact can be seen in Figure 4.

C. 0Old Algorithms and Improvement

During the development of the background subtraction
algorithm, several iterations were created and improved by
each iteration. This was an essential part of giving the neural
network the best possible ground truth to train with.

The first iterations only consisted of the raw background
subtraction (as seen in the top right hand corner of Figure
5), and all improvements were centered around tuning the
single cutoff threshold for the grayscale difference function
to obtain a background/foreground model. This however was
an incredibly non-robust model, as lighting changes and
similarities of color and patterns of objects and background
created quite heavy artifacting. To combat that effect, the
RGB image was split into its three color channels, and
each channel was treated separately. This in turn yielded
a better representation of reality, and greatly improved
the performance of differentiating between objects and

background that has a similar color value in grayscale.

The problem with this method was that, more often
than not, big parts of objects were classified as background,
and shadows and lighting changes were detrimental to
the performance. Because of that the next iteration was
implemented, which introduced the convex hull.

The convex hull removed much of the false negatives
that the raw background subtraction introduced, but it was not
perfect. For instance (as seen in the bottom left hand corner
of Figure 5) if an object is not recognised by the background
subtraction accurately enough, the convex hull will consist of
multiple non-connected ones which as an end result is not
good enough.

That was the reason for the next iteration, which introduced
the GrabCut filter. The new version used the convex hull
geometry from each frame and conducted the GrabCut
algorithm on that area of the RGB image. This was
however very computationally heavy, and still suffered
from the shifting accuracy of the background subtraction.
Therefore the input to the GrabCut filter was changed to
be the 4-class 2D matrix that denotes every pixel’s likely state.

That change made a huge difference in both computational
performance and result, and ended up being the final version.
The difference between using the convex hulls and the 4-class
matrix for a certain frame is visible in Figure 6, where the
middle frame is the convex hull input and the bottom frame
the 4-class matrix. It shows that the artifacting is greatly
decreased in situations where objects interact and glare is
present, which makes the ground truth generation more
robust.

A AR

Fig. 6: Difference between the first and second
implementation of GrabCut.

V. NEURAL NETWORK IMPLEMENTATION

The ground-truth data generated by the background subtrac-
tion algorithm is used on the recorded video data as input to
train neural networks for the task of surface detection, binary
segmentation between back- and foreground. The following
subsections describe different network architectures used in
the project, as well as the training process including key
techniques.

A. U-Net

The first network used in the project was the convolutional
encoder-decoder architecture of the U-Net, introduced in [11].
Figure 7 shows the architecture of the U-Net network. This
network was originally developed for biomedical image seg-
mentation, and can be seen as an development of the initial
idea of semantic segmentation proposed by J. Long [4].

output
segmentation
map

> >

392 x392
388388

2002
—
oo ¥
w0 ¥

284
2872
280

= conv 3x3, ReLU
copy and crop
§ max pool 2x2
4 up-conv 2x2
= conv 1x1

Al
L
4
02 ¥

28

Fig. 7: Architecture of U-Net, from [11].

U-Net is composed of an encoder and a decoder, where

the encoder downsamples the input image while the decoder
upsamples the output of the encoder. The network contains 9
convolutional layers, 4 max-pooling layers and 4 up-sampling
layers.
There are skip connections by concatenating the output of the
upsampling layers with the feature maps from the encoder at
the same level. So the encoder is classifying major objects
differing from the background and the decoder is upscaling
the output back to original resolution for enabling proper use
of the output image.

B. DeepLab v3+

Another convolutional encoder-decoder tried was a network
of the DeepLab v3+ architecture introduced in [13]. It is the
latest version of a renowned, powerful state-of-the-art seg-
mentation network, which has often shown good performance
in various applications. The network uses atrous separable
convolution to reduce the number of parameters significantly.
As result the network is able to achieve the performance of
a deep network trained on high-resolution input data in a fast
and parameter-efficient way. The DeepLab v3+ architecture is
shown in Figure 8.Even if the structure and type of DeepLab
v3+ and U-net is similar, the network architecture is in detail
very different.

“Encoder

—
3x3 Conv
Image DCNN rate 6 | —>
Atrous Conv
_ SRR - — > [1x1 Conv|
Tl L ol 3x3 Conv

rate18 | >

—

8
g
LARERERERE®

3
g
®

Pooling
“Decoder
Low-Level

Upsample
Features - l"'
== »ﬁ»»@»» il

Prediction

Fig. 8: Architecture of DeepLab v3+, from [13].

C. Training

1) Data Augmentation: Training the neural network on data
with different backgrounds, different lightning conditions and
foreground objects is essential to achieve useful generalization
instead of overfitting to a few of specific backgrounds. To train
on more diverse input data without recording a large amount
of data the project uses augmentation techniques during the
training phase. Horizontal and vertical flip, random cropping
and variable color jitter are applied randomly and in random
combinations to the input frames. Figure 9 shows a comparison
of each of these techniques applied to the same image.

Fig. 9: Data augmentation (top left: original image, top right:
flip, bottom left: crop, bottom right: color jitter.

2) Implementation setup: U-Net was implemented in Ten-
sorflow. Besides a second, similar scoring U-Net implementa-
tion the DeepLab v3+ network was implemented in PyTorch.
To compare both networks a similar training environment was
used including an Adam optimizer and cross entropy loss for
10 training epochs.

0.11

U-Net Training Loss
U-Net Validation Loss
DeepLab Training Loss
Deeplab Validation Loss | 7

0.1

0.09

loss

0.01

epochs

Fig. 10: Training curve of both networks

As it is shown in Figure 10, the loss seems to plateau at
about epoch 10 and thus training were stopped.

3) Network performing better than ground truth: Con-
sidering that the ground truth is generated by background
subtraction, there are sometimes some errors in ground truth,
which can be seen in the top right part of Figure 11. However
the network sometimes managed to correct the faulty ground
truth, and predict a more reasonable output than the ground
truth itself, which can be seen in the bottom left part of the
same figure. This shows that the neural network can perform
good by itself which was the goal of training it.

Fig. 11: U-Net process (top left: input image, top right:
background-subtraction generated ground truth, bottom left:
raw output of U-net, bottom right: binarized output of U-net).

D. Live Testing

To test the performance of the neural networks on more
than a recorded test set, a live demo was created to check the
real time output of the neural network. For instance, a self-
driving mower is driving past the camera in one sequence. A
snapshot of the result can be seen in Figure 12, where the red
transparent mask shows the binary prediction output on top of
the camera input.

Fig. 12: Realtime test showing the binary prediction as red
mask over the input.

The mower is not present in our training dataset and it
has some reflective surfaces that may disturb the background
subtraction but the neural network performance is quite good,
performance numbers can be seen in Chapter VI-C. There is
also a parameter to adjust the binarizing threshold that could
be adjusted according to the condition of lighting to obtain a
more accurate result.

VI. EVALUATION
A. Comparison of Segmentation and Background Subtraction

Since any solution to the problem stated in Chapter
II is worth investigating, using only the background
subtraction as output was tested as well. For usage in a
live setting, comparing the neural network approach to the
background subtraction becomes quite one-sided. To use the
background subtraction and get acceptable results, an accurate
background plate needs to be used and the thresholds needs
to be dynamically tuned.

This still does not ensure good performance, as with
lighting changes, restructuring of the observed area or even
wanting to move the system to another location, it requires the
operator to create another background plate. Another aspect
is the computational load, where the background subtraction,
due to the usage of GrabCut, struggles to maintain even a 1
FPS frame rate.

In contrast, the neural network approach is the better
option for real time implementation in almost every way.
The flexibility is greatly improved, as no background plate
is needed. It is also trainable for a multitude of scenarios,
with the only backside being that the background subtraction
method must be used to generate the training data.

By using a neural network, the need of background plates
and the sensitivity of changing of the scene is removed. This
leads to less variables being able to influence the performance
of the algorithm, and thus a more robust approach. The
computational strain is also decreased, as an output of > 10
FPS in 640x480 resolution is easy to obtain in real time.

B. Ground Truth

The ground truth produced by the background subtraction
algorithm is at times quite accurate but often suffers from
artifacts due to certain lightning situations and certain patterns
e.g. checkered misleading the algorithm. Using the data as
absolute ground truth is not deemed viable. An example of
how too much shadows results in a bad output from the
background subtraction can be seen in Figure 13, the network
output is slightly better but still not optimal.

1 -?? ; - k‘:
Fig. 13: From left to right, input image filled with many
shadows, background subtraction, neural network output

C. Neural Network Performance

Training the U-Net implementation on data from certain
rooms and then testing its performance in a new unseen room,
yielded a mean Intersection-over-Union (IoU) score over both
classes background and foreground of 0.855. As for using
different data augmentation techniques, the mean IoU score
of the different networks can be seen in Table I.

TABLE 1

Mean IoU-scores for different networks and data augmentation techniques.

U-Net | DeepLab v3+
No augmentation | 0.765 0.850
Random flip 0.753 0.852
Random crop 0.769 | 0.853
Color jitter 0.843 0.857
All three comb. 0.815 0.854

The differences were greater in the U-Net implementation
but a common result was that the biggest improvement of
network performance was by using color jitter. As for live
performance, the live demo was run using the GrabCut output
as ground truth and a comparison of IoU-scores and inference
time was made between the different networks and in with
basic background subtraction (without convex hulls or Grab-
Cut). The live demo was run in a room used in the training
of the network. The results are shown in Table II.

TABLE 11
Mean IoU-scores and inference times for different networks and basic
background subtraction

U-Net | DeepLab v3+ | BG-sub.
IoU score 0.960 0.971 0.957
Inf. time [s] | 0.132 0.096 0.003

The basic background subtraction is really fast, it could run
at about 300 FPS while DeepLab runs at around 10 FPS and
U-net at around 7 FPS. And even though IoU-score of the
basic background subtraction is comparable to the ones of
the networks, the method has severe drawbacks as explained
in Chapter VI-A. Adding convex hulls and GrabCut would
improve the final result but the speed would go down from
300 FPS to a maximum of about 1 FPS.

VII. CONCLUSION
A. Project Results

As a whole, the final result of the project is very promising.
The neural network was quick enough to, when it was ran on
a computer with a dedicated graphics card, output > 10 FPS
in 640x480 resolution. The output itself was also deemed
usable (by visual inspection) despite the lacking variance of
the training data, and it even has some robustness against
slight shadows and different lighting conditions. With that in
mind and with the scope of the project, the end result should
be regarded as a success, as it clearly shows off the ease and
the benefits of having a self generating ground truth paired
with a neural network.

The IoU-scores presented in Chapter VI-C are the best
performance measure used in the project but there is a
problem when using them. All IoU-scores is calculated in
comparison to the generated ground truth, which is not
actual ground truth and thus for instance when the network
outperform the ground truth as in shown in Chapter V-C3,
it will yield a lower IoU-score even though the actual
performance by visual inspection is higher.

This explains why for example the IoU-scores for different
data augmentation is not varying so much for the DeepLab
implementation even though actual performance gain could
be seen. Additionally, incorrect ground truth during training
can confuse the networks and limit the training performance.
It also makes them into values that can’t be compared to
other work, but in Table II they can be used to verify that
the neural networks actually perform on a level comparable
to basic background subtraction.

One can also see in the table that the network performs better
in a room used for training of the network than an unseen
room (0.855). There are publicly available datasets for testing
binary semantic segmentation network performance but most
include either non top-view pictures or medical images which
are all very different from our dataset. And thus they were
not used for testing.

B. Potential as a Product

This short project has by all means shown the potential of
the solution, both by flexibility of implementation, but also
from the perspective of centralizing the control of autonomous
vehicles under these types of circumstances. The strength lies
mostly in the fact that, with enough specific training data, the
end result can effectively be used in almost any settings with
a high accuracy. The possibility to improve the performance
after implementation is also a strength of this approach, as
the cost and time it takes to make a general network work
well enough is way too high.

Robustness testing is however a important step that needs to
be added and performed with care. Due to the closed nature
of neural networks one cannot know exactly how the network
will react in all circumstances, which creates an unwanted
uncertainty. That is something that needs to be resolved
before the solution could be turned into a proper commercial
product.

C. Further Improvements

The ground truth generation used in the project is quite
useful, but could be improved in several ways. A more specific
and potentially dynamic tuning could be implemented for
thresholds and grouping of convex hulls to avoid classifying
shadows as objects while at the same time not loosing track
of parts of objects due to their color. Which will in turn
lead to a more robust network due to more accurate data for
training, and thus a better working end product.

Moreover the variance of training data and obstacle
objects used should by all means be increased to ensure a
larger coverage and potentially useful recognition of objects
in general. However an improvement that has to be adjusted
depending on the environment and situations that the product
will be exposed to, because good training data in one setting
might be detrimental in another. The GrabCut algorithm
execution is quite slow and quicker alternatives can be looked
at to increase speed of the process.

With that said, the most robust improvement would be
to train the network for most environments and objects
which, if possible, would remove the requirement on the
need of generating unique training data for each new
implementation. For instance, to improve performance during
lightning changes or environments rich of shadows, training
the network in similar situations with proper ground truth
might improve robustness. Such ground truth could not be
generated by the background subtraction. If this is possible
and profitable however was outside the scope of the project.

A potential and quite different approach might also be
to generate the ground truth with the GrabCut algorithm, but
subsequently let a human examine the frames and correct
faulty parts. This leads to a much better accuracy, but requires
human interaction and becomes quite tedious. However, it

should not be understated that for the time being, this might
be the most applicable approach of all, especially for small
scale usage where the training data set is not that large.

Further work could also be focused on instance segmentation
and estimation of speed and future positions of objects
passing the cameras.

REFERENCES

[1] K. Asadi, P. Chen, K. Han, T. Wu, and E. Lobaton, “LNSNet:
Lightweight navigable space segmentation for autonomous robots on
construction sites,” Data Journal, vol. 4, no. 1, 2019.

[2] L. Taylor and G. Nitschke, “Improving deep learning using generic data
augmentation,” CoRR, vol. abs/1708.06020, 2017.

[3] A. M. Elgammal, D. Harwood, and L. S. Davis, “Non-parametric
model for background subtraction,” in Proceedings of the 6th European
Conference on Computer Vision-Part 1I, ECCV ’00, (London, UK),
pp. 751-767, Springer-Verlag, 2000.

[4] J. Long, E. Shelhamer, and T. Darrell, “Fully convolutional networks
for semantic segmentation,” CoRR, vol. abs/1411.4038, 2014.

[5] J. Zhou, “Color separation for background subtraction,” 2016.

[6] Opencv.org, 2019.

[7] D. Karunakaran, “Semantic segmentation — Udacity’s self-driving car
engineer nanodegree,” 2019.

[8] Pytorch.org, 2019.

[9] Tensorflow.org, 2019.

[10] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan,
V. Vanhoucke, and A. Rabinovich, “Going deeper with convolutions,”
in Computer Vision and Pattern Recognition (CVPR), 2015.

O. Ronneberger, P. Fischer, and T. Brox, “U-net: Convolutional networks
for biomedical image segmentation,” CoRR, vol. abs/1505.04597, 2015.
C. Rother, V. Kolmogorov, and A. Blake, “GrabCut: Interactive fore-
ground extraction using iterated graph cuts,” ACM Trans. Graph.,
vol. 23, pp. 309-314, Aug. 2004.

L. Chen, Y. Zhu, G. Papandreou, F. Schroff, and H. Adam, “Encoder-
decoder with atrous separable convolution for semantic image segmen-
tation,” CoRR, vol. abs/1802.02611, 2018.

[11]

[12]

[13]

